Base station antennas

- Multi-wire broadband dipoles
- Single-wire broadband dipoles
- Single-wire single frequency dipoles
- Rotatable log periodics
- Deltas
- Rhombics
- Conical monopoles

Additionally antenna systems can also be designed and manufactured to suit specific customer requirements.

Barrett Communications provide reliable, solidly constructed broadband, as well as single frequency, base station antennas for a variety of uses and in many different configurations to compliment our range of HF transceivers and ensure the success of your base station.

We manufacture our antennas to exacting standards using high quality stainless steel and glass reinforced composites. Our base station antennas are lightweight and corrosion resistant, but are able to withstand wind speeds in excess of 200 km/h. The full range of wire antennas are supplied complete with an inverted “V” mounting harness, 30 metres of coaxial cable and high quality waterproof connectors. Our base station antenna range includes:

www.barrettcommunications.com.au
912 Series broadband dipoles

The Barrett 912 series of broadband base station antennas are designed for use in either an inverted “V” configuration using a single mast, or a standard dipole configuration between two masts.

In the inverted “V” configuration the 912 provides a more omni directional radiation pattern. All broadband antennas in the series are designed to provide optimum performance over a wide HF spectrum, without the need for antenna tuners.

Using high quality stainless steel and glass reinforced composites the 912 series of broadband antennas are lightweight and corrosion resistant, but are able to withstand wind speeds in excess of 200 km/h. The antennas are supplied complete with an inverted “V” mounting harness, 30 metres of coaxial cable and high quality waterproof connectors.
Base station antennas

General specifications
Frequency range: 2 MHz to 30 MHz
VSWR: Less than 2.5:1
Impedance: 50 ohm
Max wind speed: 207 km/h

BC91200 150 W multi-wire broadband dipole
Length insulator to insulator: 28 metres
Width: 1.3 metres
Power handling: 150 W CW, 250 W PEP
Packed weight: 6 kg
Packed dimensions: 1.4 m x 150 mm x 100 mm

BC91201 150 W single-wire broadband dipole
Length insulator to insulator: 48 metres
Width: n/a
Power handling: 150 W CW, 250 W PEP
Packed weight: 2 kg
Packed dimensions: 250 mm x 300 mm x 75 mm

BC91202 500 W multi-wire broadband dipole
Length insulator to insulator: 28 metres
Width: 1.3 metres
Power handling: 500 W CW, 1250 W PEP
Packed weight: 13 kg
Packed dimensions: 1.4 m x 300 mm x 150 mm

BC91203 1000 W multi-wire broadband dipole
Length insulator to insulator: 28 metres
Width: 1.3 metres
Power handling: 1 Kw continuous 1.5 Kw PEP
Packed weight: 20 kg
Packed dimensions: 1.4 m x 300 mm x 150 mm

BC91207 1000 W multi-wire broadband dipole
Length insulator to insulator: 54 metres
Width: 1.3 metres
Power handling: 1 Kw continuous 1.5 Kw PEP
Packed weight: 25 kg
Packed dimensions: 1.45 m x 400 mm x 220 mm

Typical azimuth pattern
Barrett 912 single or multi-wire broadband

Typical elevation radiation pattern
Barrett 912 single or multi-wire broadband
918 Log periodic antennas

Steerable antenna with high directional gain suitable for long distance communications. Broadband input from either 13 MHz to 30 MHz or 10 MHz to 30 MHz. 918 Log periodic antennas come complete with rotator and thrust bearing. Optional feeder coaxial or rotator control cable is available to length separately.

915 Single-wire dipoles

Single-wire dipole antennas, spot-tuned to the required operating frequency, are the most efficient antennas for use in HF base stations. They are simple to install and have a relatively narrow bandwidth and requires only minimal maintenance.

When several frequencies are required at a base station, several dipoles can be stacked one above the other between two towers. An antenna switch box BC91600 can be used to switch to the required dipole depending on the channel.

General specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>918 Log periodic antenna 8 element - 13 MHz to 30 MHz</th>
<th>918 Log periodic antenna 10 element - 10 MHz to 30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>10 MHz to 30 MHz continuous</td>
<td>10 MHz to 30 MHz continuous</td>
</tr>
<tr>
<td>Typical gain</td>
<td>6-7 dBi 10 MHz to 30 MHz</td>
<td>6-7 dBi 10 MHz to 30 MHz</td>
</tr>
<tr>
<td>Front to back ratio</td>
<td>Typical 15-20 dBA 10 MHz to 30 MHz</td>
<td>Typical 15-20 dBA 10 MHz to 30 MHz</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Feed impedance</td>
<td>50 ohm unbalanced</td>
<td>50 ohm unbalanced</td>
</tr>
<tr>
<td>VSWR</td>
<td>Less than 2.5:1</td>
<td>Less than 2.5:1</td>
</tr>
<tr>
<td>Input connector</td>
<td>UHF type socket standard</td>
<td>UHF type socket standard</td>
</tr>
<tr>
<td>Power handling</td>
<td>1 kW PEP</td>
<td>1 kW PEP</td>
</tr>
<tr>
<td>Boom length</td>
<td>6.0 m</td>
<td>8.0 m</td>
</tr>
<tr>
<td>Max. element length</td>
<td>11.55 m</td>
<td>11.55 m</td>
</tr>
<tr>
<td>Turning radius</td>
<td>6.48 m</td>
<td>7.27 m</td>
</tr>
<tr>
<td>Wind survival</td>
<td>120 km/h</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Packed size</td>
<td>1.8 m x 0.2 m x 0.2 m</td>
<td>1.8 m x 0.4 m x 0.2 m</td>
</tr>
<tr>
<td>Weight</td>
<td>20 kg</td>
<td>40 kg</td>
</tr>
</tbody>
</table>

Specifications are typical. Equipment descriptions and specifications are subject to change without notice or obligation.