Antenna Series Part 2: Making sense of the radio frequency spectrum system

Antenna Series Part 2: Making sense of the radio frequency spectrum system

How to make sense of the radio frequency spectrum and its chart.

For part 2 of our series on antennas, we’ll help you understand the radio frequency spectrum system and the radio frequency chart.

What is the radio frequency spectrum system?

It’s key to first define the frequency spectrum and radio frequency bands.

The radio frequency spectrum is a section of the electromagnetic spectrum. The latter categorises the entire range of electromagnetic radiation waves. The higher end is where long and innocuous radio waves sit, whereas the other extreme includes the ultra-short and harmful gamma rays.

Radio frequency bands, which is a term usually used to describe the radio frequency spectrum for telecommunications purposes, describe a specific range between two levels of frequency. For example, FM radio frequencies have different wavelengths than AM radio.

Who decides all this?

The most recent Australian Radiofrequency Spectrum Plan was created by the Australian Communications and Media Authority (ACMA) in 2021. The purpose of this document is to be a federally-recognised allocation of all the frequency bands that make up the radio spectrum. You can read the plan here.

Anyone in Australia who wants a piece of the radio frequency spectrum must follow the rules laid out by the plan. Which part you’re allocated depends on what you want to do.

How to read the chart

The chart is divided into radio frequency bands, from very low frequency (VLF) to extremely high frequency (EHF). VLF is 3-30 kHz, or kilohertz. EHF goes up to 30-300 GHz. This is measured in gigahertz.

Using VLF as an example, take a look at the intended applications, which are color-coded on the chart found here: Allocation Chart. The far left end of VLF is unused. Reading from left to right, you can see a blue bar after that. Match it to the code above and you’ll see that this band is used for aeronautical navigation. The other two big bars are for “Fixed” and “Maritime mobile,” with a small slice intended for “Standard frequency and time signal.”

This is radio frequency spectrum 101

The radio frequency spectrum system can look intimidating at first glance, but once you understand the basics, it can be navigated with ease. Stay tuned in for part 3 of this series.

Beyond the blackout: are power distributors underestimating the effectiveness of their backup communications?

When the power goes out, communication becomes everything.

Building a radio network for community-based environmental alerts

Learn how to build an HF radio network for community alerts. Explore emergency frequencies, training, and protocols to enhance disaster resilience

PACE comms strategy: Why HF radio is vital for emergency response

Choosing the right Primary, Alternate, Contingency, and Emergency (PACE) comms strategy is critical for improving the response to critical incidents.

Cognitive Radio: Smart Solutions for Spectrum Congestion

The surge in demand for wireless communication has led to significant spectrum congestion. Cognitive radio technology offers a smart solution to this problem by intelligently identifying and switching to available channels, enhancing spectrum efficiency and mitigating congestion.

Eliminating empty zones: Why HF radio remains critical in remote desert areas

Securing reliable communications across vast desert areas that lack the necessary infrastructure can be complicated. In these so-called ‘empty zones’, which can extend for thousands of kilometres, alternative comms systems must be put in place to ensure vital personnel can remain in contact.

Advanced HF Radio Propagation Techniques: Mastering Long-Distance Communications

High-frequency (HF) radio wave propagation is crucial for long-distance communication.

Post by Cameron Berg