What causes radio interference?

What causes radio interference?

In most parts of the inhabited world, we’re lucky to have many avenues of instant communication – whether it’s the use of smartphones or different types of radio equipment. However, for critical sectors such as medicine and health, it’s vital to have a means of contact that can withstand interruptions. Here, we break down the causes of radio interference, and how modern HF radio equipment is built to work through such challenges.

Weather conditions affect HF radio performance

Some weather conditions, such as snow, can interfere with VHF radio broadcasts.

What causes radio interference?

For those providing medical relief to civilians, every second counts when lives are on the line. An HF radio network means not only that communication is guaranteed between concerned parties, including multiple points of contact, but that messages remain secure.

Secure multi-point calling
Different radios are affected by varying conditions.
Radios operate by passing data from one receiver to another. The nature of HF radio transmissions leaves it susceptible to lapses in communication caused by solar flares and ionospheric radiation. Furthermore, extreme weather events and severe thunderstorms can create atmospheric static, intercepted as white noise in radio broadcasts.

High frequency, or HF radios, propagate waves of data skyward, into the ionosphere, which bounces back to the ground and are picked up by a transceiver. This form of radio contact can send a message over thousands of kilometres, making it the perfect form of communication for relief and response missions that take teams over large distances.

VHF or very high frequency radios, on the other hand, travel over line of sight, perfect for local communication spanning a few kilometres. Though VHF radio transmits data closer to the ground, it’s not immune to interruptions. Geographical features such as hills and mountains can prevent radio waves from reaching their intended target, while snow, rain and fog cause static, making it hard to hear voice data. Rain is arguably the most disruptive, as water droplets essentially absorb the energy from the radio wave.

The Barrett 4050 HF SDR transceiver is designed to clarify incoming voice messages through Digital Signal Processing.

How does Barrett Communications’ equipment withstand interference?

Though there’s no way to control the weather, there is equipment that strives to maintain clear contact regardless of conditions.

The Barrett 4050 HF SDR transceiver incorporates Digital Signal Processing technology, which isolates voice audio while removing white noise and other background interference. For medical teams providing relief in extreme weather events such as hurricanes, clear contact is crucial to ensure that field operatives are safe and are fully aware of any destination changes or requests. Furthermore, this transceiver allows for incredibly secure contact, with features such as:

• Encrypted data transmission, which scrambles voice data and is only translated by equipment with the same PIN.
• Frequency hopping, which transmits a broadcast over various bandwidths in a specific pattern.

For more information on what Barrett Communications’ equipment is best for your needs, get in touch with our team.

Building a radio network for community-based environmental alerts

Learn how to build an HF radio network for community alerts. Explore emergency frequencies, training, and protocols to enhance disaster resilience

PACE comms strategy: Why HF radio is vital for emergency response

Choosing the right Primary, Alternate, Contingency, and Emergency (PACE) comms strategy is critical for improving the response to critical incidents.

Cognitive Radio: Smart Solutions for Spectrum Congestion

The surge in demand for wireless communication has led to significant spectrum congestion. Cognitive radio technology offers a smart solution to this problem by intelligently identifying and switching to available channels, enhancing spectrum efficiency and mitigating congestion.

Eliminating empty zones: Why HF radio remains critical in remote desert areas

Securing reliable communications across vast desert areas that lack the necessary infrastructure can be complicated. In these so-called ‘empty zones’, which can extend for thousands of kilometres, alternative comms systems must be put in place to ensure vital personnel can remain in contact.

Advanced HF Radio Propagation Techniques: Mastering Long-Distance Communications

High-frequency (HF) radio wave propagation is crucial for long-distance communication.

How HF radios aid in coastal surveillance and security

Effective coastal surveillance and security are critical for ensuring marine operations and saving lives at sea.

Post by Cameron Berg